Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Immune systems pose fascinating puzzles for evolutionary biologists. They feature some of the most polymorphic genes and reflect the strongest natural selection known. Evolution of immune systems plays a key role in host–parasite interactions, speciation, and eco-evolutionary dynamics that have community- and ecosystem-wide consequences. Conversely, evolutionary perspectives enrich our understanding of immunology, revealing macroevolutionary origins of key immune traits, their function in wild populations as opposed to sterile lab settings, and trade-offs that constrain immune adaptation. Here, we review key themes in the fast-growing interdisciplinary field of evolutionary immunology, focusing on multicellular animals. We describe macroevolution of immune functions, evidence of contemporary selection on immune genes, and the underlying theory seeking to explain this selection at multiple biological scales. We identify major open questions and opportunities in the field today. Foremost among these is the challenge of accurately and appropriately measuring relevant immune traits in wild and nonmodel organisms, which is necessary to understand their evolution in natural settings. A second challenge is to describe how diverse communities of symbionts impose selection on the highly multivariate and pleiotropic immune system.more » « lessFree, publicly-accessible full text available May 6, 2026
-
ABSTRACT Many terrestrial ectotherms have gone to great evolutionary lengths to adapt to long cold winters; some have even evolved the ability to tolerate the freezing of most of the extracellular fluid in the body. Now, however, high‐elevation and high‐latitude winters are experiencing an accelerated period of warming. Specialised winter adaptations that promoted fitness in a seasonally frozen environment may soon be superfluous or even maladaptive. We ask whether winter adaptations include changes in immune functions, and whether changing winter conditions could exert disparate effects on populations of a wide‐ranging terrestrial ectotherm, the wood frog (Lithobates sylvaticus). By rearing wood frogs from ancestral winter environments that vary in length and temperature in a common garden, and reciprocally exposing post‐metamorphic frogs to unfrozen and frozen artificial winter conditions in the lab, we were able to decompose transcriptomic differences in ventral skin gene expression into those that were environmentally induced (responsive to temperature) and genetically determined and those that varied as an interaction between the genotype and environment. We found that frogs from harsh ancestral winter environments constitutively upregulated immune processes, including cellular immunity, inflammatory processes and adaptive immune processes, as compared to frogs from mild ancestral winter environments. Further, we saw that the expression of several genes varied in an interaction between the genotype and artificial winter. We suggest that just as winter climates likely served as the selective force resulting in remarkable winter adaptations such as freeze tolerance, they may have also induced constitutive changes in immune gene expression.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract Host‐associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response. These interacting factors can have complex effects on host fitness, but few studies have disentangled the relationship between urbanization and parasitism on an organism's gut microbiota. To address this gap in knowledge, we investigated the effects of urbanization and parasitism by the invasive avian vampire fly (Philornis downsi) on the gut microbiota of nestling small ground finches (Geospiza fuliginosa) on San Cristóbal Island, Galápagos. We conducted a factorial study in which we experimentally manipulated parasite presence in an urban and nonurban area. Faeces were then collected from nestlings to characterize the gut microbiota (i.e. bacterial diversity and community composition). Although we did not find an interactive effect of urbanization and parasitism on the microbiota, we did find main effects of each variable. We found that urban nestlings had lower bacterial diversity and different relative abundances of taxa compared to nonurban nestlings, which could be mediated by introduction of the microbiota of the food items or changes in host physiology. Additionally, parasitized nestlings had lower bacterial richness than nonparasitized nestlings, which could be mediated by a change in the immune system. Overall, this study advances our understanding of the complex effects of anthropogenic stressors on the gut microbiota of birds.more » « less
An official website of the United States government
